“— |

b 4

Murdoch

UNIVERSITY

()

Topic 3: Building a CPU

ICT170: Foundations of Computer Systems



Overview

Topics:

 CPU Organisation

« Instruction Execution

» Design Principles of Modern Computers
* Processor Parallelism

« The Microarchitecture Level

« The Instruction Set Architecture

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 2




Objectives

In order to achieve the unit learning objectives, on successful
completion of this topic, you should be able to:

« Describe the basic architecture of a CPU and how it relates to a
simple computer.

« Explain the process of instruction execution in a simple CPU.

« Understand and be able to describe the different styles of CPU-
level Parallelism

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 3



Reading

Title: Structured Computer Organization (6th Edition)
Author: Andrew S. Tanenbaum, Todd Austin,

Publisher: Prentice Hall

Keywords: organization, computer, structured

Pages: 800

Published: 2012-03-05

Language: English

Category: Design & Architecture, Hardware, Computers &

ISBN-10: 0132916525 ISBN-13: 9780132916523
Binding: Hardcover (6)
Reading: Chapter 3 “The Digital Logic Level”

Resources:

* The recorded lectures available on LMS.
* The lecture slides available on LMS.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

STRUCTURED COMPUTER
ORGANIZATION

m
w

urdoch

UNIVERSITY
4



(L
Murdoch

UNIVERSITY

Building a CPU



Contemporary Multilevel Machines

Level 5 Problem-oriented language level

Translation (compiler)

Level 4 Assembly language level

Translation (assembler)

Level 3 Operating system machine level

Partial interpretation (operating system)

Level 2 Instruction set architecture level

Interpretation (microprogram) or direct execution

Level 1 Microarchitecture level
Hardware
Level O Digital logic level

A six-level computer

The support method for each level is indicated below it
[v], Murdoch

UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 6




Murdoch

UNIVERSITY

CPU

)]



The Central Processing Unit (CPU)

Central Pracessing Unit

The Central Processing Unit is a silicon
chip that is the ‘brain’ of a computer
system.

It executes program instructions to
control all the devices within the machine

Its internal organisation
(architecture) consists of 3 main
parts:

e Control unit (CU)
e Arithmetic and Logic unit (ALU)

e Registers

Also called a Von Neumann Machine
g Murdoch

UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 8




Central Processing Unit

Central processing unit (CPU)

Control
unit

Arithmetic
logical unit
(ALU)

I/O devices

Registers

1] Main
. - memory
1]

Disk

Printer

Bus

The organization of a simple computer with
one CPU and two I/O devices

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

1 Murdoch

W UNIVERSITY

9



The Control Unit

The CU sends signals to other parts of the
computer

CONTROL UNIT

It manages fetch, decode and
execute program instructions.

It synchronises the whole system by telling devices what to do and
when to do it

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 10



The Registers

The Registers are very fast storage locations inside the processor itself.
There are many registers including:

- memory address register (MAR) - holds the address of a location
in memory

- memory data register (MDR) - holds data just read from or written
to memory

« program counter (PC) - holds the address of the next instruction to
be fetched

« Instruction register (IR) - holds the current instruction being
executed

 general purpose registers - can be used by programmers
1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 11




The Arithmetic and Logic Unit

The ALU is where data is actually processed in the CPU

Processing data in the ALU involves
doing arithmetic calculations e.g. ALU
add, subtract, multiply, divide etc. Simple

Calculation Solution

It also involves logical
comparisons like AND, OR
etc. using electronic circuitry

The ALU uses special arithmetic

registers to temporarily store data

and results of calculations e.g. the

accumulator 1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 12




CPU Organization: Instruction Types

 Two broad types:

« Register-Memory
« Allows Memory words to be fetched into registers
« Allows registers to be stored back into memory

« Register-Register
« Fetches 2 operands from registers.
« Brings them to the ALU input registers
« Performs some operations

« Puts result back into registers

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 13




CPU Organization: Instruction Types

« Data Manipulation
 Add, subtract
« Increment, decrement
« Multiply
« Shift, rotate
« Immediate operands
- Data Staging
 Load/store data to/from memory
« Register-to-register move
« Control
« Conditional/unconditional branches in program flow
« Subroutine call and return

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 14




(L
Murdoch

UNIVERSITY

Instruction Execution



Sequences of Instructions

« A Computer Program is just a sequence of instructions
« We've seen how a single instruction is executed.

« What about more than one, i.e. a sequence

« We write a list of instructions.

. 343

. 2-4

. 445

. 6+1

AR W N =

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 16




Instruction Execution Steps

. Fetch next instruction from memory into instruction register
Change program counter to point to next instruction

. Determine type of instruction just fetched

AR W N =

. If instructions uses word in memory, determine where Fetch
word, if needed, into CPU register

.

Execute the instruction

6. Go to step 1 to begin executing following instruction

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 17




Instruction Execution

Reset

« It's a little more complicated than that: N
Initialize

« Control State Diagram Machine

« Reset
 Fetch instruction

« Decode
« Execute
, " : Load
« Instructions partitioned into three classes Store
. B h Register-
ranc to-Register

« Load/store
+ Register-to-register

« Different sequence through diagram for
each instruction type

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 18



(L
Murdoch

UNIVERSITY

Design Principles of Modern
Computers



Design Principles for Modern
Computers

Rules that all Modern Computers aim to meet

« All instructions directly executed by hardware

« Maximise the rates at which instructions are issued
« Instructions should be easy to decode

* Only loads, stores should reference memory — minimal reference
to memory

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 20



Design Principles for Modern
Computers

Maximise rate at which instructions are issued
 One of many tricks to optimise execution

« Although instructions are encountered in program order, They
don’t always get executed in order, Instructions can be run out of
order and in parallel

« So if you maximise issue rate, you may have massive performance
gains

« This is one of the principles of parallel instruction execution

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 21




Design Principles for Modern
Computers

« Instructions should be easy to decode
« This is a critical limit in performance
« So anything to improve this will help
« Regular instructions
» Fixed lengths
« Small number of fields

« The less complicated - the better

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

1 Murdoch

W UNIVERSITY

22



Design Principles for Modern
Computers

« Only loads, stores should reference memory

« Memory access takes a long time in comparison to register
access

« loads and store instructions are the only instructions to access
slow memory

 They can be run in parallel to faster instructions

« We are building up the ability to parallelise instructions

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 23




Design Principles for Modern
Computers

« Provide plenty of registers
« Memory access is slow
« Transferring from memory to registers takes time

« Do as much as possible in the registers!

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 24




Design Principles for Modern
Computers

« On this basis all Architectural improvements and tweaks are based
on.

 Instruction-level Parallelism
« Superscaler Architectures
« Processor-Level Parallelism

« Multiprocessors

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 25




(L
Murdoch

UNIVERSITY

Processor Parallelism



Instruction-Level Parallelism

S1 S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch »1 decode > fetch »| execution > back
unit unit unit unit unit
(a)
st: |[1]|[2]|(3]|[]|[s]|[e]|[]|(8]|[e] Sx = stage
s2: [6]
S3: [6] - Numbers are
S4: [6] Program ID
ss: 3
i 2 383 4 5 6 7 8 9
Time —

(b)
A five-stage pipeline

The state of each stage as a function of time. Nine clock
cycles are illustrated

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 27




ST

S2

Superscalar Architectures (1)

S5

Instruction
fetch
unit

Instruction
decode
unit

Write
back
unit

Instruction
decode
unit

S3 S4
Operand Instruction
fetch execution
unit unit
Operand Instruction
fetch execution
unit unit

Write
back
unit

Dual five-stage pipelines with a common instruction fetch unit.

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 28




Processor-Level Parallelism (1)

Control unit

é Broadcasts instructions

HEHEHBEHBEHBHHBEH
HEHHEHHBEHBEHHBEH
HEHEHHBEHHHH
HHEHHHBEHHHH

Processor HEHHEHHBHHHHH
>EEEEEEEE
Memory HHEHBHHBEHHHH
HEHHHEHBEHHHBH

> 8 x 8 Processor/memory grid

Generally not used

as this can’t be built from
Commodity CPUs

1 Murdoch

W UNIVER SITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 29



Processor-Level Parallelism (2)

Local memories

N S

Shared Shared

memory memory
CPU CPU CPU CPU CPU CPU CPU CPU

Bus Bus

(@) (b)

A single-bus multiprocessor.
A multicomputer with local memories.

All modern CPUs are like this!
1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 30




(L
Murdoch

UNIVERSITY

The Microarchitecture Level



Contemporary Multilevel Machines

Level 5 Problem-oriented language level

Translation (compiler)

Level 4 Assembly language level

Translation (assembler)

Level 3 Operating system machine level

Partial interpretation (operating system)

Level 2 Instruction set architecture level

Interpretation (microprogram) or direct execution

Level 1 Microarchitecture level
Hardware
A six-level computer Level 0 Digital logic level

The support method for each level is indicated below it

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 32




The Microarchitecture Level

« Its job is to implement the Instruction Set of a processor on the
underlying Digital Logic

« It takes higher-level instructions and figures out how to run them
on the Digital Logic Circuitry

« Recall the Digital Logic description of a ALU!
« It was a little dumb, just A+B, AB, ‘B and Adder.

« To do more we need to build on these fundamental building
blocks - this is what the microarchitecture level does!

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 33




The Microarchitecture Level:
Characteristics

Goals depend on:
« The Instruction Set Architecture being implemented
« Cost and Performance Goals of the Computer

Many modern ISAs have instructions that can be implemented in a
single clock cycle

« e.g. ARM architectures

More complex ISAs may require many cycles to execute a single
instruction

« e.g. the Pentium 4

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 34




The Microarchitecture Level:
Characteristics

Executing an Instruction Set Architecture instruction may require the
microarchitecture to:

« Locate operands in Memory

« Read them

« Store results from the operation into Memory

Deals with the sequencing of operations within a single instruction.

« This can be different depending on the operation, the ISA and
the goals of the computer

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 35




The Microarchitecture

« A small program that sits in a ROM of a CPU

« Performs what is called a fetch-execute cycle

It fetches the instruction and all that is needed from memory

It executes the instruction as a series of digital logic operations

For example, ISA operations might include:

Opcode param
IMUL, IADD, ISTORE; to multiple, add and store ints.

The microarchitecture executes these instructions

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 36




Recall: Arithmetic Logic Units (1)

Logical unit Carry in
AB
INVA— = B
Can do: EN&ZEED Dﬂ i|_) _D—_ —
. B \ B
AAND B ens +— D
AOR B .
Inv B
A+ B (full Adder) > %
“ines | Fr—1t
ﬁgleﬁgd from: Dfm RN
00, 01, 10, 11 i 1 o ) i
7\
ENVA ENVB: i Do_‘:/\
Forces A or B to 0. : —=
(Norma”y 1) Decoder
Carry out
INVA: Inv A 1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 40



The Data Path (4)

* ALU Functions selectable F, | F, | ENA [ ENB [ INVA | INC [ Function
through the control lines o | 11 1 0 0 o | A
 Recall how these are set using 0|1} 0 | 1 0 | 0 |8
last weeks digital logic L L O N L L
110 1 1 0 0 | B
« FO, F1, determines the ALU 101 ] 1 1 0 0 |A+B
operation selection 101 ] 1 1 0 1 | A+B+1
_ 101 ] 1 0 0 1 | A+
« ENA,ENB - enable inputs A,B PR 0 ] 0 T 1 Beq
+INVA - invert A L O N O - .
1 1 0 1 1 0 B-1
« INC - Increase by 1 1 11 1 0 1 1 | A
. 2 other shift controls SLL, SRL }[2 1% | 1 | f 0 [ 0 |AANDB
0 1 1 1 0 0 AORB
« Shift Left/Right Logical 0|1] o 0 0 0 |0
1 1 0 0 0 1 1
111] o 0 1 0 | -1
1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 41




Needs 29 Signals B
Memolry
O v registers
from <
mglr?wry < — PC —
« 9 to write from C bus ':ansﬁ:}%g
9 to write to B bus B
8 to control ALU and shifters v S
* 2 tO |ndlcate I"/W tO MAR/MDR CPP L ?EnableontoBbus
« 1 for memory fetch via PC/MBR - o
OPC —
C bus ~<—— B bus
l A JdLB
6 p. g
ALU control ALU N

Shifter control
2

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 42




Microinstructions

Bits 9 3 8 9 3 4
JIJ|J|S|S|F|F|E|E|I|IH|O|T|C|L|S|P|MIMIWI|R|E
M|A[A]L|R N[N|N[N POPVPCDA'?ElIE. 5
NEXT _ADDRESS PIMIMIL|A A|B|VI|[C CIS|P R(RITIA|C ™
cIN[zls |1 A E|ID|H] PYS
Addr JAM ALU C Mem B
What does a microinstruction look like? B bus registers
_ . 0=MDR 5=LV
Ac_Idr._addres_s of a potential next 1= PC 6 = CPP
Mmicroinstruction 2 = MBR 7 =TOS
o o 3=MBRU 8=0PC
JAM: how next microinstruction is selected 4 =SP 9-15 none

ALU: ALU and shifter functions
C: which register written from C

Mem: memory functions

B: Source of B 1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 43



Microinstruction

Memory control signals (rd, wr, fetch)

Control

So, this is how
microinstruction
instruction maps to the
Physical Machine!

v 4
p— MAR 4-t0-16
~ Decoder
TTTTTTT
MPC 9
# [®) \ 4
8 'HS '
512 x 36-Bit
control store
for holding
A 94 the microprogram
v =
A JMPC
MIR
CPP > | Adar [J] ALu | ¢ [m[B|
TOS —
JAMN/JAMZ
OPC ——
High ;
= I B s bit ;
Control
. N s 7N % %1-bit flip—flop signals
ALU 4 Enable
z onto
l B bus
Shifter #
2
sl f Write
C bus
to register
EE TVIUTUQUVUCLlL 1

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

N UNIVERSITY

44



(L
Murdoch

UNIVERSITY

Microarchitecture Examples



The NetBurst Pipeline

y
o
: L1
Decod t —
ecode uni BTB
Front v
end Microcode| | L Trace
. .« . ROM BTB
A simplified view of
N
A 4
H .
th e Pent| um 4 data path . Allocation/Renaming unit
Of“" Nc;n ; L2h To/from
or- 3 Memo cache memor
order < memory queu;y Y
control queue
\ 4 y A
| ALU sched| |Load sched| [Store sched 1
L I_ALU sched | : | | | I
|
o] Floating-point register file Integer register file "
4 t—j E M Load/
FP, MMX un(;:/e Int Int store
SSE
P L1data
A | X X cache

Retirement unit

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 46




The UltraSPARC III Cu
Microarchitecture

ICT170: Foundat

Stage

§‘ Address multiplexor /

Instruction queueing

J
___________________ ]____l____________________
R | Working register file |
E Float‘ing-pgint ) N %ALU} B
_J register file D 2 B
T T —l____ T "] cache —————5 5 25|
(1]
C ol >| __’.C_‘)od
~4-{ 2l M & Hffe Aot fpretetch |- T—
8 12 33 glgp extend| | cache
M < SIS alignment <
= lo ]
=y B2 H SR |[Eespseeaeee e =
8:§ ﬂ:‘é
> © S| 8
w gio £10
—— — m - e e e e ——— s —— —— — ——————————— ——— —
o | ,
X
D e R e A Store [T~
ueue
T q
A 4 A l

—1 Architectural register file

cache

F'1 Murdoch

UNIVERSITY

a7



The Microarchitecture of the 8051 CPU

Main bus
ROM C:'\\/ <— ROM
1} ﬁ Local bus
RAM ADDRK(——— ROM ADDR < :
R K= k= BUFFER =>
sp <= PCincrementer <=
B Ke=> PC <>
ACC |Gl DPTR <>
h 8|
A
™Rz K& | K= Timer 0
™MP1 K= K Timer 0
e Timer 0
- KE=>4 Porto
k&= Port1
a <& Port2
'l Murdoch
PswW K= K== Port3 N UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 48



(L
Murdoch

UNIVERSITY

Addressing Modes



Addressing Modes

« Immediate

« Direct

« Indirect

 Register

» Register Indirect

« Displacement (Indexed)
« Stack

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 50




Immediate Addressing

« Operand is part of instruction

« Operand = address field

« e.g. ADD AX, OAh

. LDA #O0Ah
Add 10 to contents of accumulator
10 is operand

« No memory reference to fetch data

« Fast

- Limited range

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

[nstruction

Operand

(a) Immediate

1 Murdoch

W UNIVERSITY

51




Direct Addressing

Instruction

|| A |

Memory

« Address field contains address of operand
« Effective address EA = address field (A)

. ADD AX, value

- Value DB 0Ah Lo

Add contents of cell value to accumulator AX

—p Operand

Look in memory at address value for operand
« Single memory reference to access data
« No additional calculations to work out effective address

« Limited address space

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 52




Indirect Addressing

Memory cell pointed to by address field
contains the address of (pointer to) the
operand

EA =(A)

Look in A, find address (A) and
look there for operand

e.g. ADD AX, (A)

Add contents of cell pointed to by
contents of A to accumulator

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

[nstruction

A

Memory

w

Operand |—

—»

(¢) Indirect

1 Murdoch

W UNIVERSITY

53




(L
Murdoch

UNIVERSITY

The Instruction Set Architecture



The Instruction Set Architecture level

Level 5
The level above the
Microarchitecture level 1

evel 4
of our 5 level computer

Level 3

Level 2

Level 1

Level O

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Partial interpretation (operating system)

Instruction set architecture level

Interpretation (microprogram) or direct execution

Microarchitecture level

Hardware

Digital logic level

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 55



ISA Level

The ISA level is the interface between the compilers and the

hardware.
FORTRAN 90 C program
program
FORTRAN 90 C program
program compiled compiled
to ISA program to ISA program
Software
BAleyel 0200 |eeeeesseeesnemmmamseRsee
Hardware
ISA program executed
by microprogram or hardware
Y
Hardware
1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 56



ISA Level: The theory

« Instead of having the hardware execute C/Java/etc programs on
the hardware directly - this would be very hard..

« Translate programs in high-level languages to a common
intermediate form

- Programmers write to this ISA interface/level

FORTRAN 90 C program
FORTRAN 90 q program
s il FORTRAN 90 C program
FORTRAN 90 program compiled compiled
program compiled 'to ISA program "to ISA program
"to ISA program Sifivrs
ISAlevel  |rmmmmmmmmmmmmm e
ISA level Hardware
ISA program executed
ISA progral by microprogram or hardware
by micropr¢ Y
Y
Hardware
Hardware I

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 57




(L
Murdoch

IIIIIIIII

Supporting the ISA Level



Supporting the ISA level (1/2)

« Programmers don’t actually write code in the instruction set
architecture language

« Compilers ‘compile’ programs from a high-level language to the
ISA level.

« The ISA level defines the boundary between the hardware and
the compiler

« Itis the language that both the compiler and the hardware
must understand

« Implemented by the microarchitecture in hardware

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 59



Supporting the ISA level (2/2)

« When designing a new machine:

« The hardware architects talk to the compiler designers and
agree on what is needed in the ISA-level

« Features needed by the compiler are added to the ISA

« Features deemed too complex to implement are not added and
instead left to the compiler to implement at a higher level

« Unnecessary hardware features are left out.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 60




(L
Murdoch

UNIVERSITY

Designing the ISA Level



What makes a good ISA? (1/2)

1. Define a set of instructions that can be implemented efficiently

« By current and future technologies

Results in cost-effective design over several generations of CPU
technology.

Poor designs are more difficult to implement and may require more
gates and more memory

Poor design may run slower.

A design that takes advantage of a current technology might not be
the best for the future

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 62



What makes a good ISA? (1/2)

2. Should provide a clean target for compiled code
- Regularity and completeness in the range of options

- Contain obvious - not crazy - options.

Should make the hardware designers happy (easy to implement) and
the software designers happy (easy to generate code for)

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 63




Designing the ISA Level (1)

Properties of the ISA Level

« Recognise that ISA-code is what a compiler outputs

The compiler needs to understand microarchitecture level properties
of the machine, including:

What the memory model is.
What registers are available.
What Data types and instructions are available

On most machines, the ISA level defines Kernel and User modes

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 64



Designing the ISA Level (2)

« Not Properties of the ISA Level

« Other issues are not part of the ISA as the compiler doesn’t need
to understand them:

Hardware parallelism, superscaler design etc.
The operation of the Control Unit and ALU.

Optimisations at the CPU level e.g. converting Int to Float
instructions

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 65




Designing the ISA Level (3)

Memory Model

*The compiler needs to understand how the computer organises its
memory

*Most bytes are grouped into 4-byte(32-bit) or 8-byte (64-bit) words with
instructions available for manipulating entire words.

«Compilers can use memory in whatever way they see fit.

owever, some machines require that words are aligned in memory cells, e.q.
An 8-byte word in a little-endian memory. (a) Aligned. (b) Not
aligned. Some machines require that words in memory be aligned.

Address Address
~ 8 Bytes > - 8 Bytes "
1 24 S I I A N I I
s 2 N 16 P 19:i18:17 i 16| 16
15i14:13:12:i11:10i 9 | 8 8 15i14 i 1312 : : 8
: i 1§ P 0§ \o I N 0
N
Aligned 8-byte Nonaligned 8-byte
word at address 8 word at address 12 h
C

(@) (b) Ty

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 66



Designing the ISA Level (4)

Registers

« All computers have some registers visible and available to the ISA
level/compiler

. In general registers at the microarchitecture level are not visible - e.qg.
Memory address registers

Visible Register types:

. General Purpose Registers
. Hold local-variable, or intermediate results of calculations
. Primary use is when you need maximum possible performance

. Generally, providing more general purpose registers will improve potential
program/compiler performance

Special Purpose Registers
. For Program Counters, stack pointers etc.
. Look at the instruction set for the Intel Pentium series of CPUs

. Specialised instructions emerge every generation for e.g. graphics and complex
maths

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 67




Designing the ISA Level (5)

Instructions
« Main feature of the ISA level is the machine instructions it contains

« Always will contain LOAD and STORE for moving data between
memory and registers

MOVE for copying data between registers
Arithmetic instructions and boolean instructions
Instructions for comparing data items and branching on the results

Any Specialised instructions

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 68



Data Types at the ISA Level

« All Computers need to store data

« To store data efficiently, the CPU can provide hardware support for
it.

Data Types:

 Numeric

« Integers of multiple lengths, 8-bit, 16-bit, 32-bit, 64-bit
Different size of words depending on size

* Non-numeric

« ASCII, UNICODE

« CPU ISAs can have instructions to help managed non-numeric
data-types

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 69




Data Types on the Pentium 4

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit
Signed integer X X X
Unsigned integer X X X
Binary coded decimal integer X
Floating point X X
The Pentium 4 numeric data types.
Supported types are marked with x.
1 Murdoch

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

W UNIVERSITY

70




Data Types on the UltraSPARC III

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit
Signed integer X X X P
Unsigned integer X X X P

Binary coded decimal integer

Floating point X X X

The UltraSPARC III numeric data types.

Supported types are marked with x.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 71




Data Types on the 8051

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit P
Signed integer X

Unsigned integer

Binary coded decimal integer

Floating point

The 8051 numeric data types.

Supported types are marked with x.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 72




(L
Murdoch

UNIVERSITY

Instruction Types



Instruction formats at the ISA Level

« ISA Instructions consist of an opcode (operation code)

« Additional information such as where operands come from, where
results go, etc

Specifying where operands come from is called addressing
Instructions can be the same length with padding

Or variable size - requiring some sort of memory management

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 74




Instruction Formats

Example instructions:

OPCODE OPCODE ADDRESS

(a) (b)

OPCODE |[ADDRESS1|ADDRESS2 OPCODE | ADDR1 | ADDR2 | ADDRS3

(c) (d)

Four common instruction formats:

(a) Zero-address instruction. (b) One-address instruction
(c) Two-address instruction. (d) Three-address instruction.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 75




Instruction Formats (2)

~— 1 Word——— 1 Word -1 Word ———
Instruction Instruction Instruction Instruction
Instruction Instruction Instruction Instruction | Instr. | Instr.
Instruction Instruction Instruction ,
: : : Instruction
Instruction Instruction Instruction

(@) (b) ()

Some possible relationships between instruction and word length.

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 76



The Pentium 4 Instruction Formats

Bytes 0-5 1-2 0-1 0-1 0-4 0-4
| PREFIX | OPCODE | MODE | SIB | DISPLACEMENT | IMMEDIATE |
A \
Bits 6 11 Bits 2 3 3
| INSTRUCTION | | | [SCALE| INDEX | BASE |

Which operand is source? T
Byte/word

Bits 2 3 3
| MOD | REG [ RM |

The Pentium 4 instruction formats.

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 77



Instruction types at the ISA Level

« There are many types of ISA instructions:

Data Movement Instructions
Dyadic Operations (combine 2 operands and produce a result)
Monadic (take one operand and produce one result)

Comparisons and Conditional Branches (test and branch
control)

Procedure Call Instructions (A group of instructions that can
be called)

Loop Control (Control repeated looping)

Input/Output (Control input and output)

1 Murdoch

W UNIVERSITY

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 78



Example: The Pentium 4 Instructions

A selection of the Pentium 4 integer

instructions.

Moves

A selection of the Pentium 4
integer instructions.
Binary coded decimal

MOV DST,SRC Move SRC to DST

PUSH SRC Push SRC onto the stack

POP DST Pop a word from the stack to DST
XCHG DS1,D082 Exchange DS1 and DS2

LEA DST,SRC Load effective addr of SRC into DST
CMOVce DST,SRC | Conditional move

DAA Decimal adjust
DAS Decimal adjust for subtraction
AAA ASCII adjust for addition
AAS ASCII adjust for subtraction
AAM ASCII adjust for multiplication
AAD ASCII adjust for division
Boolean
AND DST,SRC Boolean AND SRC into DST
OR DST,SRC Boolean OR SRC into DST
XOR DST,SRC Boolean Exclusive OR SRC to DST
NOT DST Replace DST with 1's complement

Shift/rotate

SAL/SAR DST,#

Shift DST left/right # bits

SHL/SHR DST ,#

Logical shift DST left/right # bits

Arithmetic
ADD DST,SRC Add SRC to DST
SUB DST,SRC Subtract SRC from DST
MUL SRC Multiply EAX by SRC (unsigned)
IMUL SRC Multiply EAX by SRC (signed)
DIV SRC Divide EDX:EAX by SRC (unsigned)
IDIV SRC Divide EDX:EAX by SRC (signed)
ADC DST,SRC Add SRC to DST, then add carry bit
SBB DST,SRC Subtract SRC & carry from DST
INC DST Add 1 to DST
DEC D3T Subtract 1 from DST
NEG DST Negate DST (subtract it from 0)

ROL/ROR DST, #

Rotate DST left/right # bits

RCL/RCR DST,#

Rotate DST through carry # bits

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

I w s W s ws =

N UNIVERSITY

79




Example: The Pentium 4 Instructions

Test/compare Transfer of control
TEST SRC1,SRC2 | Boolean AND operands, set flags JMP ADDR Jump to ADDR
CMP SRC1,SRC2 Set flags based on SRC1 - SRC2 Jxx ADDR Conditional jumps based on flags
CALL ADDR Call procedure at ADDR
RET Return from procedure
IRET Return from interrupt
LOOPxx Loop until condition met
INT n Initiate a software interrupt
INTO Interrupt if overflow bit is set
Strings
LODS Load string
STOS Store string
MOVS Move string
CMPS Compare two strings
SCAS Scan Strings

F'1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 80




Example: The Pentium 4 Instructions

Condition codes

Miscellaneous

SWAP DST Change endianness of DST

cwaQ Extend EAX to EDX:EAX for division
CWDE Extend 16-bit number in AX to EAX
ENTER SIZE,LV Create stack frame with SIZE bytes
LEAVE Undo stack frame built by ENTER
NOP Mo operation

HLT Halt

IN AL,PORT Input a byte from PORT to AL

OUT PORT,AL Qutput a byte from AL to PORT
WAIT Wait for an interrupt

STC Set carry bit in EFLAGS reqister
CLC Clear carry bit in EFLAGS register
CMC Complement carry bit in EFLAGS
STD Set direction bit in EFLAGS register
CLD Clear direction bit in EFLAGS reg
STI Set interrupt bit in EFLAGS register
CLI Clear interrupt bit in EFLAGS reg
PUSHFD Push EFLAGS register onto stack
POPFD Pop EFLAGS register from stack
LAHF Load AH from EFLAGS register
SAHF Store AH in EFLAGS register

SRHC = source
DST = destination

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

# = shift/rotate count
LV = # locals

1 Murdoch

W UNIVERSITY

81




(L
Murdoch

IIIIIIIII

Additional materials for
the workshop (self studies)



Machine codes

« Machine code or machine language is a set of instructions
executed directly by a computer's central processing unit (CPU).

« Every processor or processor family has its own machine code
instruction set.

« the instruction set is specific to a class of processors using
(mostly) the same architecture.

» Successor processor designs often include all the instructions of a
predecessor and may add additional instructions.

« Occasionally, a successor design will discontinue or alter the
meaning of some instruction code (typically because it is needed
for new purposes), affecting code compatibility to some extent

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 83




Machine codes — pros and cons

Advantages:
« Can have very specific instructions for processor features
« Allows the ongoing modification of the instruction set

« Allows for processors to have competitive advantage

Disadvantages:

« Almost impossible to program in

« Requires higher-level software to actually use
« Requires constant updates of system software

« Requires constant updates of development tools
1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 84




Assembly Language - Why

« Machine instructions are actually processor-specific strings of 1s
and 0Os.

 They usually correspond to actual pins and wires on the processor.
As such, they are very obscure, very complex and difficult for
people to understand.

« Assembler language is simply a programming language that
represents various instructions in symbolic code, which is more
understandable.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 85




Assembly language programming

* A low-level programming language

« Has a very strong (generally one-to-one) correspondence between
the language and the architecture's machine code instructions

« Assembly language is converted into executable machine code by
a utility program referred to as an assembler

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 86




Assembly - pros and cons

Advantages:
« Easier to understand
« Easier to program with/actually possible

« Can use the same programs across a processor family

Disadvantages:
« Hard to cover all the possible machine instructions
 Therefore not optimal

* Very hard to write programs in assembler that will work on
different processors.

1 Murdoch

W UNIVERSITY
ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 87




(L
Murdoch

UNIVERSITY

Summary



Summary

 CPU Organisation

« Instruction Execution

» Design Principles of Modern Computers
* Processor Parallelism

« The Microarchitecture Level

« The Instruction Set Architecture

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel

1 Murdoch

W UNIVERSITY

89



