
ICT170: Foundations of Computer Systems

Topic 3: Building a CPU

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 2

Topics:

• CPU Organisation

• Instruction Execution

• Design Principles of Modern Computers

• Processor Parallelism

• The Microarchitecture Level

• The Instruction Set Architecture

Overview

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 3

In order to achieve the unit learning objectives, on successful
completion of this topic, you should be able to:

• Describe the basic architecture of a CPU and how it relates to a
simple computer.

• Explain the process of instruction execution in a simple CPU.

• Understand and be able to describe the different styles of CPU-
level Parallelism

Objectives

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 4

Reading

Building a CPU

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 6

A six-level computer

The support method for each level is indicated below it

Contemporary Multilevel Machines

CPU

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 8

The Central Processing Unit (CPU)

The Central Processing Unit is a silicon
chip that is the‘brain’of a computer
system.

• Control unit (CU)

• Arithmetic and Logic unit (ALU)

• Registers

It executes program instructions to
control all the devices within the machine

Its internal organisation
(architecture) consists of 3 main
parts:

Also called a Von Neumann Machine

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 9

The organization of a simple computer with
one CPU and two I/O devices

Central Processing Unit

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 10

The Control Unit

It manages fetch, decode and
execute program instructions.

It synchronises the whole system by telling devices what to do and
when to do it

The CU sends signals to other parts of the
computer

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 11

The Registers are very fast storage locations inside the processor itself.
There are many registers including:

• memory address register (MAR) – holds the address of a location
in memory

• memory data register (MDR) – holds data just read from or written
to memory

• program counter (PC) – holds the address of the next instruction to
be fetched

• Instruction register (IR) – holds the current instruction being
executed

• general purpose registers – can be used by programmers

The Registers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 12

The Arithmetic and Logic Unit

The ALU is where data is actually processed in the CPU

Processing data in the ALU involves
doing arithmetic calculations e.g.
add, subtract, multiply, divide etc.

It also involves logical
comparisons like AND, OR
etc. using electronic circuitry

The ALU uses special arithmetic
registers to temporarily store data
and results of calculations e.g. the
accumulator

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 13

• Two broad types:

• Register-Memory

• Allows Memory words to be fetched into registers

• Allows registers to be stored back into memory

• Register-Register

• Fetches 2 operands from registers.

• Brings them to the ALU input registers

• Performs some operations

• Puts result back into registers

CPU Organization: Instruction Types

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 14

• Data Manipulation

• Add, subtract

• Increment, decrement

• Multiply

• Shift, rotate

• Immediate operands

• Data Staging

• Load/store data to/from memory

• Register-to-register move

• Control

• Conditional/unconditional branches in program flow

• Subroutine call and return

CPU Organization: Instruction Types

Instruction Execution

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 16

• A Computer Program is just a sequence of instructions

• We’ve seen how a single instruction is executed.

• What about more than one, i.e. a sequence

• We write a list of instructions.

1. 3+3

2. 2-4

3. 4+5

4. 6+1

Sequences of Instructions

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 17

Instruction Execution Steps

1. Fetch next instruction from memory into instruction register

2. Change program counter to point to next instruction

3. Determine type of instruction just fetched

4. If instructions uses word in memory, determine where Fetch
word, if needed, into CPU register

5. Execute the instruction

6. Go to step 1 to begin executing following instruction

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 18

• It’s a little more complicated than that:

• Control State Diagram

• Reset

• Fetch instruction

• Decode

• Execute

• Instructions partitioned into three classes

• Branch

• Load/store

• Register-to-register

• Different sequence through diagram for
each instruction type

Instruction Execution

Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch
Taken

Init

Fetch
Instr.

XEQ
Instr.

Load/
StoreBranch

Incr.
PC

Design Principles of Modern
Computers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 20

Design Principles for Modern
Computers

Rules that all Modern Computers aim to meet

• All instructions directly executed by hardware

• Maximise the rates at which instructions are issued

• Instructions should be easy to decode

• Only loads, stores should reference memory – minimal reference
to memory

• Do as much as possible in the registers!

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 21

Maximise rate at which instructions are issued

• One of many tricks to optimise execution

• Although instructions are encountered in program order, They
don’t always get executed in order, Instructions can be run out of
order and in parallel

• So if you maximise issue rate, you may have massive performance
gains

• This is one of the principles of parallel instruction execution

Design Principles for Modern
Computers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 22

• Instructions should be easy to decode

• This is a critical limit in performance

• So anything to improve this will help

• Regular instructions

• Fixed lengths

• Small number of fields

• The less complicated – the better

Design Principles for Modern
Computers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 23

• Only loads, stores should reference memory

• Memory access takes a long time in comparison to register
access

• loads and store instructions are the only instructions to access
slow memory

• They can be run in parallel to faster instructions

• We are building up the ability to parallelise instructions

Design Principles for Modern
Computers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 24

• Provide plenty of registers

• Memory access is slow

• Transferring from memory to registers takes time

• Do as much as possible in the registers!

Design Principles for Modern
Computers

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 25

• On this basis all Architectural improvements and tweaks are based
on.

• Instruction-level Parallelism

• Superscaler Architectures

• Processor-Level Parallelism

• Multiprocessors

Design Principles for Modern
Computers

Processor Parallelism

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 27

Instruction-Level Parallelism

 A five-stage pipeline

 The state of each stage as a function of time. Nine clock
cycles are illustrated

Sx = stage

Numbers are
Program ID

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 28

Superscalar Architectures (1)

Dual five-stage pipelines with a common instruction fetch unit.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 29

Processor-Level Parallelism (1)

An array of processors.

Generally not used

as this can’t be built from

Commodity CPUs

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 30

Processor-Level Parallelism (2)

 A single-bus multiprocessor.

 A multicomputer with local memories.

 All modern CPUs are like this!

The Microarchitecture Level

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 32

Contemporary Multilevel Machines

A six-level computer

The support method for each level is indicated below it

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 33

• Its job is to implement the Instruction Set of a processor on the
underlying Digital Logic

• It takes higher-level instructions and figures out how to run them
on the Digital Logic Circuitry

• Recall the Digital Logic description of a ALU!

• It was a little dumb, just A+B, AB, ‘B and Adder.

• To do more we need to build on these fundamental building
blocks – this is what the microarchitecture level does!

The Microarchitecture Level

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 34

The Microarchitecture Level:
Characteristics

Goals depend on:

• The Instruction Set Architecture being implemented

• Cost and Performance Goals of the Computer

Many modern ISAs have instructions that can be implemented in a
single clock cycle

• e.g. ARM architectures

More complex ISAs may require many cycles to execute a single
instruction

• e.g. the Pentium 4

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 35

The Microarchitecture Level:
Characteristics

Executing an Instruction Set Architecture instruction may require the
microarchitecture to:

• Locate operands in Memory

• Read them

• Store results from the operation into Memory

Deals with the sequencing of operations within a single instruction.

• This can be different depending on the operation, the ISA and
the goals of the computer

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 36

The Microarchitecture

• A small program that sits in a ROM of a CPU

• Performs what is called a fetch-execute cycle

• It fetches the instruction and all that is needed from memory

• It executes the instruction as a series of digital logic operations

• For example, ISA operations might include:

• Opcode param

• IMUL, IADD, ISTORE; to multiple, add and store ints.

• The microarchitecture executes these instructions

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 40

Recall: Arithmetic Logic Units (1)

A 1-bit ALU.

Can do:

A AND B

A OR B

Inv B

A + B (full Adder)

Selected from:

F0, F1:

00, 01, 10, 11

ENVA ENVB:

Forces A or B to 0.

(Normally 1)

INVA: Inv A

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 41

The Data Path (4)

• ALU Functions selectable
through the control lines

• Recall how these are set using
last weeks digital logic

• F0, F1, determines the ALU
operation selection

• ENA,ENB – enable inputs A,B

• INVA – invert A

• INC – Increase by 1

• 2 other shift controls SLL, SRL

• Shift Left/Right Logical

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 42

Needs 29 Signals

• 9 to write from C bus

• 9 to write to B bus

• 8 to control ALU and shifters

• 2 to indicate r/w to MAR/MDR

• 1 for memory fetch via PC/MBR

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 43

Microinstructions

What does a microinstruction look like?

 Addr: address of a potential next
microinstruction

 JAM: how next microinstruction is selected

 ALU: ALU and shifter functions

 C: which register written from C

 Mem: memory functions

 B: Source of B

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 44

So, this is how
microinstruction
instruction maps to the
Physical Machine!

Microinstruction
Control

Microarchitecture Examples

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 46

The NetBurst Pipeline

A simplified view of

the Pentium 4 data path.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 47

The UltraSPARC III Cu
Microarchitecture

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 48

The Microarchitecture of the 8051 CPU

Addressing Modes

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 50

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement (Indexed)

• Stack

Addressing Modes

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 51

• Operand is part of instruction

• Operand = address field

• e.g. ADD AX, 0Ah

• LDA #0Ah

 Add 10 to contents of accumulator

 10 is operand

• No memory reference to fetch data

• Fast

• Limited range

Immediate Addressing

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 52

• Address field contains address of operand

• Effective address EA = address field (A)

• ADD AX, value

• Value DB 0Ah

 Add contents of cell value to accumulator AX

 Look in memory at address value for operand

• Single memory reference to access data

• No additional calculations to work out effective address

• Limited address space

Direct Addressing

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 53

• Memory cell pointed to by address field
contains the address of (pointer to) the
operand

• EA =(A)

 Look in A, find address (A) and
look there for operand

• e.g. ADD AX, (A)

 Add contents of cell pointed to by
contents of A to accumulator

Indirect Addressing

The Instruction Set Architecture

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 55

The Instruction Set Architecture level

The level above the

Microarchitecture level

of our 5 level computer

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 56

ISA Level

The ISA level is the interface between the compilers and the
hardware.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 57

ISA Level: The theory

• Instead of having the hardware execute C/Java/etc programs on
the hardware directly – this would be very hard..

• Translate programs in high-level languages to a common
intermediate form

• Programmers write to this ISA interface/level

Supporting the ISA Level

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 59

Supporting the ISA level (1/2)

• Programmers don’t actually write code in the instruction set
architecture language

• Compilers ‘compile’ programs from a high-level language to the
ISA level.

• The ISA level defines the boundary between the hardware and
the compiler

• It is the language that both the compiler and the hardware
must understand

• Implemented by the microarchitecture in hardware

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 60

Supporting the ISA level (2/2)

• When designing a new machine:

• The hardware architects talk to the compiler designers and
agree on what is needed in the ISA-level

• Features needed by the compiler are added to the ISA

• Features deemed too complex to implement are not added and
instead left to the compiler to implement at a higher level

• Unnecessary hardware features are left out.

Designing the ISA Level

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 62

What makes a good ISA? (1/2)

1. Define a set of instructions that can be implemented efficiently

• By current and future technologies

• Results in cost-effective design over several generations of CPU
technology.

• Poor designs are more difficult to implement and may require more
gates and more memory

• Poor design may run slower.

• A design that takes advantage of a current technology might not be
the best for the future

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 63

What makes a good ISA? (1/2)

2. Should provide a clean target for compiled code

• - Regularity and completeness in the range of options

• - Contain obvious – not crazy – options.

Should make the hardware designers happy (easy to implement) and
the software designers happy (easy to generate code for)

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 64

Designing the ISA Level (1)

Properties of the ISA Level

• Recognise that ISA-code is what a compiler outputs

• The compiler needs to understand microarchitecture level properties
of the machine, including:

• What the memory model is.

• What registers are available.

• What Data types and instructions are available

• On most machines, the ISA level defines Kernel and User modes

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 65

Designing the ISA Level (2)

• Not Properties of the ISA Level

• Other issues are not part of the ISA as the compiler doesn’t need
to understand them:

• Hardware parallelism, superscaler design etc.

• The operation of the Control Unit and ALU.

• Optimisations at the CPU level e.g. converting Int to Float
instructions

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 66

Designing the ISA Level (3)

Memory Model

•The compiler needs to understand how the computer organises its
memory

•Most bytes are grouped into 4-byte(32-bit) or 8-byte (64-bit) words with
instructions available for manipulating entire words.

•Compilers can use memory in whatever way they see fit.

•However, some machines require that words are aligned in memory cells, e.g.

An 8-byte word in a little-endian memory. (a) Aligned. (b) Not

aligned. Some machines require that words in memory be aligned.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 67

Designing the ISA Level (4)

Registers

• All computers have some registers visible and available to the ISA
level/compiler

• In general registers at the microarchitecture level are not visible – e.g.
Memory address registers

• Visible Register types:

• General Purpose Registers

• Hold local-variable, or intermediate results of calculations

• Primary use is when you need maximum possible performance

• Generally, providing more general purpose registers will improve potential
program/compiler performance

• Special Purpose Registers

• For Program Counters, stack pointers etc.

• Look at the instruction set for the Intel Pentium series of CPUs

• Specialised instructions emerge every generation for e.g. graphics and complex
maths

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 68

Designing the ISA Level (5)

Instructions

• Main feature of the ISA level is the machine instructions it contains

• Always will contain LOAD and STORE for moving data between
memory and registers

• MOVE for copying data between registers

• Arithmetic instructions and boolean instructions

• Instructions for comparing data items and branching on the results

• Any Specialised instructions

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 69

Data Types at the ISA Level

• All Computers need to store data

• To store data efficiently, the CPU can provide hardware support for
it.

• Data Types:

• Numeric

• Integers of multiple lengths, 8-bit, 16-bit, 32-bit, 64-bit

• Different size of words depending on size

• Non-numeric

• ASCII, UNICODE

• CPU ISAs can have instructions to help managed non-numeric
data-types

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 70

Data Types on the Pentium 4

The Pentium 4 numeric data types.

Supported types are marked with ×.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 71

Data Types on the UltraSPARC III

The UltraSPARC III numeric data types.

Supported types are marked with ×.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 72

Data Types on the 8051

The 8051 numeric data types.

Supported types are marked with ×.

Instruction Types

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 74

Instruction formats at the ISA Level

• ISA Instructions consist of an opcode (operation code)

• Additional information such as where operands come from, where
results go, etc

• Specifying where operands come from is called addressing

• Instructions can be the same length with padding

• Or variable size – requiring some sort of memory management

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 75

Instruction Formats

Four common instruction formats:

(a) Zero-address instruction. (b) One-address instruction

(c) Two-address instruction. (d) Three-address instruction.

Example instructions:

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 76

Some possible relationships between instruction and word length.

Instruction Formats (2)

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 77

The Pentium 4 instruction formats.

The Pentium 4 Instruction Formats

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 78

Instruction types at the ISA Level

• There are many types of ISA instructions:

• Data Movement Instructions

• Dyadic Operations (combine 2 operands and produce a result)

• Monadic (take one operand and produce one result)

• Comparisons and Conditional Branches (test and branch
control)

• Procedure Call Instructions (A group of instructions that can
be called)

• Loop Control (Control repeated looping)

• Input/Output (Control input and output)

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 79

Example: The Pentium 4 Instructions

A selection of the Pentium 4 integer
instructions.

A selection of the Pentium 4
integer instructions.

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 80

Example: The Pentium 4 Instructions

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 81

Example: The Pentium 4 Instructions

Additional materials for
the workshop (self studies)

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 83

• Machine code or machine language is a set of instructions
executed directly by a computer's central processing unit (CPU).

• Every processor or processor family has its own machine code
instruction set.

• the instruction set is specific to a class of processors using
(mostly) the same architecture.

• Successor processor designs often include all the instructions of a
predecessor and may add additional instructions.

• Occasionally, a successor design will discontinue or alter the
meaning of some instruction code (typically because it is needed
for new purposes), affecting code compatibility to some extent

Machine codes

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 84

Advantages:

• Can have very specific instructions for processor features

• Allows the ongoing modification of the instruction set

• Allows for processors to have competitive advantage

Disadvantages:

• Almost impossible to program in

• Requires higher-level software to actually use

• Requires constant updates of system software

• Requires constant updates of development tools

Machine codes – pros and cons

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 85

• Machine instructions are actually processor-specific strings of 1s
and 0s.

• They usually correspond to actual pins and wires on the processor.
As such, they are very obscure, very complex and difficult for
people to understand.

• Assembler language is simply a programming language that
represents various instructions in symbolic code, which is more
understandable.

Assembly Language - Why

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 86

• A low-level programming language

• Has a very strong (generally one-to-one) correspondence between
the language and the architecture's machine code instructions

• Assembly language is converted into executable machine code by
a utility program referred to as an assembler

Assembly language programming

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 87

Advantages:

• Easier to understand

• Easier to program with/actually possible

• Can use the same programs across a processor family

Disadvantages:

• Hard to cover all the possible machine instructions

• Therefore not optimal

• Very hard to write programs in assembler that will work on
different processors.

Assembly – pros and cons

Summary

ICT170: Foundations of Computer Systems, Topic 3. Ferdous Sohel 89

• CPU Organisation

• Instruction Execution

• Design Principles of Modern Computers

• Processor Parallelism

• The Microarchitecture Level

• The Instruction Set Architecture

Summary

